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Upper gastrointestinal (GI) neoplasia account for 35% of
GI cancers and 1.5 million cancer-related deaths every
year. Despite its efficacy in preventing cancer mortality,
diagnostic upper GI endoscopy is affected by a substantial
miss rate of neoplastic lesions due to failure to recognize a
visible lesion or imperfect navigation. This may be offset by
the real-time application of artificial intelligence (AI) for
detection (computer-aided detection [CADe]) and charac-
terization (computer-aided diagnosis [CADx]) of upper GI
neoplasia. Stand-alone performance of CADe for esopha-
geal squamous cell neoplasia, Barrett’s esophagus–related
neoplasia, and gastric cancer showed promising accuracy,
sensitivity ranging between 83% and 93%. However,
incorporation of CADe/CADx in clinical practice depends
on several factors, such as possible bias in the training or
validation phases of these algorithms, its interaction with
human endoscopists, and clinical implications of false-
positive results. The aim of this review is to guide the
clinician across the multiple steps of AI development in
clinical practice.
Keywords: Artificial Intelligence; Convoluted Neural Networks;
Deep Learning; Upper GI Endoscopy; Gastric Cancer; Esopha-
geal Cancer; Barrett’s esophagus.
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U35% of GI cancers and 1.5 million cancer-related
deaths every year, worldwide.1 Disappointingly, the 5-year
survival is still dismal, primarily because of the poor 5-
year survival in the most advanced stages of the dis-
ease.1,2 Moreover, the incidence is expected to remain high
in the next decade because of the increasing aging popula-
tion.3 At the current time, early detection and screening/
surveillance of high-risk patients represents the most
effective intervention to reduce such burden by down-
staging already prevalent cancer or preventing its incidence
by interrupting the progression from precancerous to
invasive phases of the disease.4–8 Upper GI endoscopy was
associated with an additional 67% reduction of gastric
cancer vs radiography, and its mortality was significantly
reduced by endoscopic, but not by radiologic, screening.9–13

Similarly, surveillance of Barrett’s esophagus (BE)–related
neoplasia (BERN) has been shown to reduce late-stage
cancers.14

For upper GI diseases, proper histologic sampling allows
for risk stratification for patients with precancerous lesions
or conditions.4,15,16 More recently, optical diagnosis has
been shown to in vivo predict histology-based stratification,
including assessment of the depth of invasion, resulting in a
more effective strategy of targeted biopsies.4,17,18

However, diagnostic upper GI endoscopy is far from
being an optimal technique. By pooling 22 studies, the
overall rate of missed gastric cancer (GC) at endoscopy was
estimated to be 9.4% (95% confidence interval [CI], 5.7–
13.1), with a rate of 10% in studies including patients with
negative findings on esophagogastroduodenoscopy (EGD)
followed over time, 8.3% in studies including patients with
GC, and 23.3% in studies evaluating the proportion of
missed synchronous lesions.19 Similarly, a 20%–40% miss
rate of visible neoplastic lesions in Barrett’s esophagus has
been shown.20 The 2 most plausible pitfalls are represented
by the visual failure of the endoscopist to recognize a lesion
that has been exposed and an incomplete exposure of the
entire GI mucosa because of imperfect navigation. The
former is to be attributed to issues such as lack of training,
the low prevalence of early neoplastic lesions, the flat and
subtle appearance of upper GI neoplasia, and a suboptimal
inspection time.21–23 The latter depends on well-defined
blind spots for gastric mucosa assessment, reluctance to
adopt pre-endoscopic preparation with mucolytic and anti-
foam agents, inadequate cleaning of the mucosa, and lack of
the use of advanced imaging techniques for the detection of
subtle lesions.

By exploiting the setting of validation studies for artifi-
cial intelligence (AI), we recently evaluated the visual miss
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rate of human endoscopists for detecting expert-selected
cases of upper GI neoplasia and its associated factors.24

By extracting data on 122 endoscopists, we estimated an
18% miss rate for upper GI neoplasia detection.24 In detail,
such a miss rate was statistically significantly lower for
Eastern vs Western endoscopists (13% [95% CI, 11–16] vs
25% [95% CI, 22–28]), and for expert vs nonexpert endo-
scopists (15% [95% CI, 13–17] vs 29% [95% CI, 25–33]).24
What Is Artificial Intelligence for Upper
Gastrointestinal Neoplasia?

Real-time application of AI for the detection and char-
acterization of upper GI neoplasia is primarily based on
deep learning (DL) algorithms.17,25 Different from human-
engineered machine learning, DL implies an automatic
extraction of the input features required for pattern recog-
nition. These inputs are arranged in a multilayered convo-
luted algorithm that is able to provide an instantaneous
output for real-time endoscopy to the same extent as object
or face recognition for nonmedical applications of DL. A
unique advantage of DL as compared to the human eye is its
ability to explore all the pixels of each image for all of the
consecutive images of an upper GI endoscopy without any
transitory lack of attention or tiredness. The output is
generally provided as a square or circle around the lesion or
suggested diagnosis, that is, the bounding box. Heat or
spatial maps may also be used. The main limitation of DL
algorithms is the lack of information on how the algorithms
actually work. This represents a distinct difference from
human-based machine learning, where the algorithm is
based on simple and clear rules. In theory, any decision-
making process in the clinical setting should be driven by
combinations of appropriate data features in the context of
GI endoscopy. Thus, efforts to improve the transparency,
explainability, and intelligibility of these DL algorithms are
warranted, and possible techniques have been proposed.26

The 2 main tasks required from DL are real-time
detection, also named as computer-aided detection
(CADe), and characterization, that is, computer-aided diag-
nosis (CADx). CADe usually results in both detection and
localization (also called segmentation) of the suspected
area, whereas CADx is expected to clinically differentiate
between 2 or more diagnosis. CADe has been applied for the
detection of both esophageal squamous cell neoplasia,
BERN, and early GC, whereas CADx may predict the depth of
invasion of visible neoplastic lesions and differentiate be-
tween neoplastic and nonneoplastic tissue or the presence
of precancerous conditions, such as gastric atrophy. The
usual layout of a CADe output is the real-time overlapping of
a bounding square/circle that outlines the borders of a
suspected lesion/condition, whereas CADx provides a
diagnostic output, such as the likelihood of a lesion being
precancerous and/or prediction of depth of invasion. A mix
of the 2 can also be used by providing the endoscopist with
the most suspicious area in which to perform targeted bi-
opsies, usually in the shape of a heat map. Additional tasks
performed by DL systems are represented by the
identification of anatomic landmarks and blind spots, mea-
surement of withdrawal speed, assessment of the level of
cleansing of the mucosa, and delineation of the lesion.

Usually, for GI endoscopy, DL is specifically based on a
supervised training that consists of a large database of
histologically verified endoscopic images that have been
manually annotated.25 Manual annotation of each single
frame represents, by far, the most laborious and time-
consuming phase of DL development, and dedicated soft-
ware to propagate the annotation from the initial to the
subsequent frames is currently under development.27 In DL
construction, training databases are usually split into a
training and tuning database, with multiple methodologies
to partition the database. Such tuning activity is sometimes
termed validation in engineering jargon. However, such
terms should be avoided in the clinical setting to preserve
the difference between the tuning that is executed with
images already included in the training data set and the
clinical validation that is performed on an independent data
set. In other words, tuning outputs should never be
considered to predict AI discrimination accuracy in the
clinical setting.

DL tasks are extremely narrow, strictly depending on the
training database that has been used.25 For instance, if a DL
algorithm has been instructed to detect BERN, this should
not be applied for BE characterization, or vice versa. For this
reason, it is of critical importance that the gastroenterolo-
gist, before using an AI system, be fully aware of the clinical
population that has been used for the supervised training, as
well as of the several biases that may prevent the general-
izability of this training data set to his/her own clinical
population. The main features of the training data set are
the actual number of patients, disease prevalence, practice
setting (ie, tertiary centers), endoscopist number and
experience, and the technical characteristics, such as the use
of white light, advanced imaging, and optical magnification,
as reported in Table 1. Several biases may affect the DL
learning process at the level of the patient population, skill
of the endoscopist, and technique used (Table 2). This is the
case with selection bias when the database is not repre-
sentative of a consecutive or average-risk population. For
instance, the predictive values measured in tertiary centers
with diseased patient enrichment may not be applicable in
community centers with a lower disease prevalence. Selec-
tion bias may be more frequent in upper, compared with
lower, GI neoplasia because of the low prevalence of disease
that prevents the collection of databases with consecutive
patients. However, such bias may be softened by data
augmentation techniques involving the manipulation of the
original image to create surrogate images that may be used
for training purposes, such as flipping, cropping, rotation,
and zooming. Alternatively, an operator bias may occur
when only a few expert endoscopists have collected the
training data set. Third, a spectrum bias may occur when
only cases clearly representative of the disease or healthy
status are enrolled. For instance, when only cases of high-
grade dysplasia or early cancer in BE are included, the
system may miss an advanced cancer. Fourth, the DL algo-
rithm may have been trained with a suboptimal number of



Table 1.Characteristics of Studies of AI for Upper GI Neoplasia

First author
(year)

Design
(training) Setting Light

Clinical
vs offline

External
validation

Patient in
training set

Total
images for
training

Patients in
test set

Total
images in
test set

SCC detection
Guo (2020)33 M E/W WLI/mag

blue light
Offline Y — 6473 59 6671

Guo (2020)33

(videos)
M E/W WLI/mag

blue light
Offline Y — 6473 60 168,865

(frames)
Cai (2019)34 M E WLI Offline N 746 2428 52 187
Zhao (2019)59 U E Mag blue

light
Offline N — — — —

Ohmori (2020)70 U E WLI/blue
light/iodine

Offline N — — — —

Horie (2019)35 U E WLI/mag
blue light

Offline N 384 8428 47 1118

Shiroma (2021)36 U E WLI/mag
blue light

Offline N 384 8428 72 —

Tang (2021)37 U E WLI Offline Y 1078 4002 243 1033
Waki (2021)38 U E Mag blue

light
Offline N 1572 18,797 100 Videos

SCC invasion depth > SM1
Nakagawa

(2019)71
U E WLI/blue

light/mag
iodine

Offline N — — 155 914

Tokai (2020)72 U E WLI/blue
light

Offline N — 10,179 55 279

Uema (2021)73 U E Mag blue
light

Offline N 336 1777 336 747

BAR þ EAC detection
de Groof (2020)39 M W WLI Clinical Y 509 1544 20 144
Ebigbo (2020)42 U W WLI/blue

light
Clinical Y — 129 14 62

de Groof (2020)40 M W WLI Offline Y 509 1544 160 160
de Groof (2019)41 M W WLI Offline N — — 60 60
Ebigbo (2019)43 U W WLI/blue

light
Offline N — 248 — —

Ghatwary (2019)44 U W WLI Offline N 39 100 39 100
Hashimoto

(2020)45
U W WLI/mag

blue light
Offline N 65 916 39 458

van der Sommen
(2016)46

U W WLI Offline N — — 44 100

Horie (2019)35 U E WLI/mag
blue light

Offline N 384 8428 47 1118

Gastric cancer detection
Wu (2021)68 U E WLI Clinical

(RCT)
Y — — — —

Wu (2022)67

(Detection þ
invasion
depth þ
differentiation
status)

M E WLI/mag
blue light

Clinical Y — — 100 —

Hirasawa (2018)74 M E WLI/blue
light

Offline Y — — 69 2296

Hu (2021)55 M E Mag blue
light

Offline Y 170 — 120 —

Ueyama (2021)56 U E Mag blue
light

Offline N — 5574 — 2300

Ishioka (2019)75 M E WLI Offline Y — — 62 —

Wu (2019)48 M E Mag blue
light

Offline Y — 9151 — 200
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Table 1.Continued

First author
(year)

Design
(training) Setting Light

Clinical
vs offline

External
validation

Patient in
training set

Total
images for
training

Patients in
test set

Total
images in
test set

Horiuchi (2020)49 U E Mag blue
light

Offline Y — 2570 — 258

Yoon (2019)76 U E WLI Offline Y — — — —

Li (2020)50 U E Blue light/
mag FICE

Offline N — 2088 — 341

Miyaki (2013)51 U E Blue light/
mag FICE

Offline N — 493 46 92

Kanesaka
(2018)52

U E Mag blue
light

Offline N 127 126 127 81

Sakai (2018)53 U E WLI Offline N 58 926 58 9650

Gastric cancer categorization AGC, EGC, HGD, LGD NC
Cho (2019)52 — — WLI Offline Y 1066 4205 200 200

Gastric cancer invasion depth
Yoon (2019)76 U E WLI Offline Y — — — —

Zhu (2019)77 U E WLI Offline Y 790 790 203 203

Detection of all upper GI cancers
Luo (2019)57 M E WLI Clinical Y 15,040 125,898 84,425 894,927

NOTE. Adapted and updated from Arribas et al.31
AGC, advanced gastric cancer; E, Eastern; EGC, early gastric cancer; FICE, Fuji Intelligent Color Enhancement; HGD, high-
grade dysplasia; LGD, low-grade dysplasia; mag, magnification; M, multicenter; N, no; NC, no cancer; RCT, randomized
controlled trial; SCC, squamous cell cancer; SM1, upper third submucosal; U, single center; W, Western; WLI, white light
imaging; Y, yes.
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cases or too homogeneous pattern of lesions so that it
memorizes rather than learns. This is termed overfitting bias
and may be more frequent for upper, rather than lower, GI
neoplasia because of the much lower prevalence of upper GI
neoplasia. Thus, an appropriate sample size of the training
database remains a critical need for DL development. Fifth,
the use of advanced imaging in the training set should be
considered. Although DL algorithms are extremely robust to
exogenous factors, such as blue light or magnified endos-
copy,28 it seems more appropriate to apply any AI system
with the same light that has been used in training. However,
there is emerging evidence showing comparable perfor-
mances of AI systems across different imaging modalities.29
How Should We Evaluate Artificial
Intelligence Studies of Upper
Gastrointestinal Neoplasia?

Similar to any device aiming to improve the quality of
diagnostic endoscopy, AI must be clinically validated before
it is incorporated into clinical practice.17,25 Such validation,
also named testing in engineering jargon, should entail
those principles that ensure a high reproducibility and
generalizability of the findings, including a rigorous refer-
ence standard or comparator, and the definition of patient-
centered outcomes that are usually represented by a
neoplastic and healthy status against which the discrimi-
nation power of the system is validated. A unique advantage
of AI validation in upper GI endoscopy is that the reference
standard is generally strengthened by histologic verifica-
tion. This is, for instance, the case with CADe validation,
where the accuracy of the machine is tested against the
detection of lesions histologically defined as neoplastic, as
well as that of CADx, where the comparator is directly
represented by histology. However, there are also cases in
the validation of AI software for upper GI endoscopy where
the reference standard cannot be histologically verified. For
example, this is the case when aiming to identify the hot
spot for targeted biopsies or the accuracy in the delineation
of early GC.20 In these cases, only an expert-derived veri-
fication represented by endoscopist raters can be per-
formed. To minimize the variability of the criterion
standard, an average among multiple raters is generally
recommended.

AI systems, however, have a unique feature that some-
what simplifies their validation. In the pre-AI era, the
diagnostic benefit of new devices was validated in ran-
domized trials between the standard and the new endo-
scopic modalities. Such randomization was needed for 2
main reasons: (1) to adjust for the intergroup disease
prevalence by balancing for patient-related risk factors and
(2) to prevent selection and operator bias due to the ten-
dency to favor the new technique.30 This is not the case
when validating AI algorithms. The stand-alone perfor-
mance of DL is based on an unbiased intrapatient compar-
ison of AI discrimination against a human ground truth. In
other words, stand-alone performance studies address the



Table 2.Common Biases in Endoscopic AI Studies

Biases Description

Training bias (ground truth)
Selection bias Only the most suitable patients are selected in a nonconsecutive sequence from 1 or a few centers.
Spectrum bias Only cases with a clear pattern of the disease are selected. For instance, only adenomas or

hyperplastic polyps are included, whereas sessile serrated lesions are excluded from a mixed
imaging pattern.

Operator bias (training) Image annotation and/or image acquisition was made by 1 or a few expert physicians.
Overfitting bias (training) The system has been trained to memorize but not to learn. Thus, a substantial drop in performance is

observed in the testing phase.

Testing bias

Overfitting bias (testing) Severe: The system has been tested on frames or cases that overlap with the training set. In this case,
training performance and test performance can be equally high, but if the system is tested with new
cases, the performance will drop.

Mild: The system has been tested on frames or cases that do not overlap with the training set but come
from the same center and/or the same physician that provided the training set.

Operator bias (testing) The system is tested against the ground truth but not against other comparators (ie, benchmarking
endoscopists).
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simple question: how often does AI detect what was
detected by human endoscopists?

These studies are usually done in an artificial setting by
exposing AI to the reference standard consisting of a data-
base of images representative of the neoplastic lesion or
healthy status as identified and selected by experts.31,32 The
main precondition for a meaningful validation of AI systems
is the complete independence between the training/tuning
databases and the validation database. Indeed, images that
may be related to the same cases used for training/tuning
should never be present in the validation database because
this would artificially inflate the discriminatory ability of the
system (overfitting bias). The best scenario is represented
by a validation database that is extracted by a different
patient population than the one adopted for DL training,
possibly with the highest degree of heterogeneity in terms
of endoscopists and centers. However, independence be-
tween databases is not the only precondition for a proper
validation. Validation studies are also susceptible to several
biases—such as spectrum or selection bias—that are quite
similar to those anticipated for the training data set and are
summarized in Table 2.

The output of validation studies is usually represented
by its discrimination power, which is presented as accuracy
values, that is, sensitivity and specificity, as well as positive
predictive value (PPV) and negative predictive value (NPV)
due to the occurrence of both false positives and negatives.
Such values may be plotted in receiver operating charac-
teristic curves to select the threshold that is more suitable
for the specific clinical purpose. For instance, in the case of
neoplasia detection, false negatives are much more relevant
than false positives, which usually require only additional
biopsies. Discrimination power should be provided in terms
of both per-frame and per-lesion accuracy. Usually, the per-
frame sensitivity is much lower than the per-lesion because
most of the lesions are not identifiable in all of the
sequential frames (per frame), whereas most of them are
detected by the AI system in at least 1 frame (per lesion).
Theoretically, per-lesion sensitivity is clinically more rele-
vant because the detection of 1 lesion in only 1 frame is
enough to alert the endoscopist to the suspected area.
However, the per-frame value is more reassuring because it
is not certain whether each lesion is exposed to the camera
for more than 1 frame.

How Good Is Artificial Intelligence for
the Detection/Characterization of
Upper Gastrointestinal Neoplasia?

Several studies addressing the stand-alone performance
of AI for the detection and characterization of upper GI
neoplasia are summarized in Table 1.
Esophageal Squamous Cell Neoplasia
The stand-alone performance of AI for the detection of

esophageal squamous cell neoplasia (ESCN) has been
assessed in both white light and blue light as well as with
magnified or unmagnified endoscopy, primarily in an
Eastern setting on enriched-disease databases with images
and/or videos. In a recent systematic review of 3 stud-
ies,31,33–35 including a total of 176,841 images from 218
patients in the test set, the AI sensitivity, specificity, PPV,
and NPV for ESCN were 93% (95% CI, 73–99), 89% (95%
CI, 77–95), 77% (95% CI, 55–89), and 97% (95% CI, 88–
100), respectively. In individual studies, these values
favorably compared with the accuracy of expert endo-
scopists, which is reassuring regarding the clinical value of
such algorithms. Overall, the quality of the included studies
was graded low because of risk of selection, spectrum, and
operator biases in the training sets of the studies. After the
meta-analysis was published, a further 3 studies were
published in Asian settings,36–38 all of them reporting
similarly very high values of accuracy, as reported in the
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pooled analysis.31 In detail, 1 Japanese study38 assessed the
performance of AI on videos simulating overlooked
ESCN—that is, withdrawal speed constant throughout the
esophagus—showing an 85.7% sensitivity, which was
higher than that of 21 endoscopists (75%).
Barrett’s Esophagus–Related Neoplasia
The stand-alone performance of AI for the detection of

visible neoplastic lesions in BE lesions has been primarily
assessed in Western settings with white light and advanced
imaging, mainly with an unmagnified setting. We recently
pooled 9 AI studies39–47 regarding the detection of high-
grade dysplasia/early cancer (BERN), and the total
numbers of images and patients in the test set were 2,276
and 423, respectively. AI sensitivity, specificity, PPV, and
NPV for BERN were 89% (95% CI, 83–93), 88% (95% CI,
84–91), 88% (95% CI, 84–91), and 89% (95% CI, 83–93),
respectively. The quality for BE studies was higher because
2 were conducted in a real-time clinical setting, demon-
strating the feasibility of using this software during clinical
practice.39,42 Of note, one study compared AI accuracy with
that of 53 general endoscopists, showing a higher AI accu-
racy than any of the individual endoscopists40 with com-
parable delineation performance. Real-time application of
this software has also been shown.39,42
Gastric Adenocarcinoma
The stand-alone performance of AI for the detection of

gastric cancer has been primarily assessed in Eastern
setting using both white light and blue light, as well
magnified and unmagnified endoscopy. By pooling 7 stud-
ies,48–54 including a total number of images and patients in
the test set, the sensitivity, specificity, PPV, and NPV were
88% (95% CI, 78–94), 89% (95% CI, 82–93), 88% (95% CI,
80–93), and 89% (95% CI, 80–94), respectively.

Although none of the studies was conducted in a real-
time clinical setting, the quality was graded as medium,
given the multicenter nature of the studies and the strict
distinction between the training and testing phases. After
the publication of the meta-analysis, 2 papers on gastric
cancer detection were published, confirming a high AI ac-
curacy with values favorably comparing to expert and junior
endoscopists.55,56

When considering all upper GI neoplastic lesions, a very
large multicenter study from China57 assessed AI accuracy
on more than 1 million endoscopy images coming from
84,424 patients, showing a 92.7% accuracy on the external
testing database, which was similar to that of expert endo-
scopists and superior to that of junior endoscopists.

The use of AI for the characterization of specific endo-
scopically identifiable pathologic characteristics of upper GI
cancers is another, newer frontier being studied.
Intrapapillary Capillary Loops for Early
Esophageal Squamous Cell Neoplasia

Changes in intrapapillary capillary loop (IPCL) struc-
tures, seen with virtual chromoendoscopy (eg, narrow-band
imaging), is a feature of early esophageal squamous cell
carcinoma that also helps determine treatment options
because it correlates with tumor depth of invasion. One
proof-of-concept CADx system was trained to characterize
IPCL patterns based on the Japanese Endoscopic Society
classification. Using 7046 narrow-band imaging images
from 17 patients and 5-fold cross-validation, the system
performed with an overall accuracy of 93.7% (95% CI, 86.2–
98.3), sensitivity of 89.3% (95% CI, 78.1–100), and speci-
ficity of 98% (95% CI, 92–99.7).58 In another study, using a
separate CADx system with real-time endoscopy, the model
performed with 89.2% accuracy at the level of anatomic
lesions and 93% accuracy at the pixel level. When compared
to endoscopist classification with differing years of experi-
ence, the model performed significantly better than endo-
scopists with <15 years of experience in characterization of
neoplastic lesions (P < .001).59

Depth of Invasion in Barrett’s Esophagus–
Related Neoplasia

The differentiation between T1a and T1b BERN is crit-
ical to allocate patients to the correct treatment (endoscopic
vs surgical). A recent pilot study60 assessed the perfor-
mance of AI in differentiating T1a from T1b BERN in white
light images. The accuracy of the system was 71%, similar to
that of expert endoscopists used as the benchmark (70%).

Gastric Precancerous Lesions/Gastric Cancer
A pilot study61 investigated the accuracy of an AI system

fully dedicated to the detection of gastric atrophy conditions
used to guide targeted biopsies and increase diagnostic
power. This system showed a 93% accuracy, outperforming
expert endoscopists (80%).

Gastric neoplasia can be subclassified into different
categories (ie, low-grade dysplasia, high-grade dysplasia,
early gastric cancer, advanced gastric cancer) that have
different treatment options. An AI system showed compa-
rable performance to that of experienced endoscopists in
correctly classifying gastric neoplasia.62

Delineation of Gastric Cancer
Similar to IPCLs for ESCN, the margins of early GC are an

important characteristic visualized with virtual chro-
moendoscopy that helps determine treatment plans to
ensure curative resection. Using 2 different neural networks
trained on separate training image sets, investigators
developed an AI system to detect GC followed by delineation
of the margins. AI accurately delineated margins for differ-
entiated GC at a rate of 82.7% (95% CI, 78.6–86.1) and at a
rate of 88.1% (95% CI, 84.2–91.1) for undifferentiated GC.
The system was then tested on endoscopy videos and was
able to perform at video speeds for both differentiation and
delineation.63

Blind Spots
Real-time quality improvement AI systems are being

developed to assist endoscopists in areas such as identifying
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blind spots and key anatomic landmarks related to upper GI
neoplasia.

A single-blind, 3-parallel-group randomized controlled
trial compared the blind spot rate of unsedated ultrathin
transoral endoscopy, unsedated conventional EGD, and
sedated conventional EGD with or without AI. The blind
spot rates for all AI subgroups were significantly lower than
all non-AI subgroups (P < .001). Sedated conventional EGD
with AI assistance achieved the lowest blind spot rate of all
parallel groups (P < .05).64

Anatomic Landmarks
In an initial proof-of-concept study showing that land-

mark identification with AI training is possible, investigators
used 3704 images labeled with 11 anatomic landmarks as
identified in the British and Japanese guidelines for appro-
priate endoscopic procedure documentation. The AI sys-
tems performed with a mean accuracy of 87.43% (standard
deviation [SD], 4.25) to 88.11% (SD, 4.62) using 4 test sets.
To be clinically relevant in patients with suspected upper GI
diseases, this capability must be applied to real-time
endoscopy.65

It could be argued that such stand-alone performance
represents a worst-case scenario for AI systems because the
ground truth that has been selected by experts does not
necessarily represent the current standard of endoscopy.
For this reason, a methodology adopted quite frequently is
to administer the same cases used for AI testing to a group
of physicians who were not involved in the collection of the
ground truth in the first place. Such a benchmarking group
usually consists of a mix of experienced and less-
experienced endoscopists rating multiple images from
different patients (in a blinded fashion) from AI output. The
characterization studies for IPCL and GC delineation are
examples that used this methodology to assess the superi-
ority of their AI systems. Such methodology is also named
multicase multireader methodology, and it has been exten-
sively used in AI applications in medicine. As already sum-
marized, AI performances favorably compared with human
performances.24 A second limitation of our pooling of data
extracted from an artificial setting is that there are possible
methodologic pitfalls related to the intrinsic bias of the in-
dividual studies, such as selection or technical bias, that
prevent an immediate translation of these point estimates to
community practice endoscopy.
What Is the value of Artificial
Intelligence for Upper Gastrointestinal
Neoplasia in Clinical Practice?

Despite its consistency, the simple evidence of a robust
stand-alone performance of an AI system for the detection
or characterization for upper GI neoplasia does not ensure
additional value when AI is incorporated into clinical prac-
tice. AI systems are considered low-risk devices expected to
assist but not replace the endoscopist. Thus, the AI output
does not necessarily correspond to the physician diagnosis
because it may be affected by the interaction between the
physician and the machine. For instance, when the AI sys-
tem flags a true positive, this may be rejected by the
physician and considered as a false positive. Vice versa, a
false positive may trigger an unnecessary resection with
detrimental rather than incremental effects on patient care
and endoscopist performance. On the other hand, a false
negative result by the machine may be compensated for by
an autonomous diagnosis by the physician, resulting in a
unique human–machine diagnostic ability that depends on
each of the 2 sides separately. The relevance of these pitfalls
is increased by the following 2 observations. Different from
colorectal polyps, neoplastic lesions in the upper GI tract are
usually subtle and flat. In addition, inflammatory changes
may mimic such neoplastic changes, requiring a careful
differential diagnosis between the 2. Second, most of this
software has been tested against high-grade dysplasia and
early cancer for both BERN and gastric lesions, and the
additional detection of low-grade dysplasia may result in an
overdiagnosis, also increasing the cost of surveillance and
treatment.

For this reason, clinically controlled trials with ran-
domized or tandem design are needed to define the addi-
tional value of AI in the diagnostic process. The usual design
is the comparison between standard endoscopy vs AI-
assisted endoscopy with patient-centered outcomes, as
summarized earlier. To date, one system (EndoAngel;
Wuhan University, Wuhan, China) has been extensively
validated with a more rigorous methodologic approach, for
which 4 published clinical trials are currently available.64,66–68

Briefly, in these various clinical trials, this system has been
shown to increase the inspection time of the gastric mucosa
(5.40 minutes [SD, 3.82] vs 4.38 minutes [SD, 3.91]; P < .001),
to reduce the percentage of blind spots during upper GI
endoscopy (21% [95% CI, 1.6–40] vs 38.9% [95% CI, 0.8–
68.3]; P < .001), and to reduce the miss rate68 in a tandem
methodology design (6.1% [95% CI, 1.6–17.9] vs 27.3% [95%
CI, 15.5–43.0]; relative risk, 0.224 [95% CI, 0.068–0.744]; P ¼
0.015). In addition, the same system showed sensitivity rates
for detecting gastric neoplasia and diagnosing early gastric
cancers (EGCs) of 87.81% and 100%, respectively, signifi-
cantly higher than those of endoscopists (83.51% and 87.13%,
respectively).67 Accuracy rates of the system for predicting
EGC invasion depth and differentiation status were compara-
ble to those of the endoscopists.67 When passing from pre-
clinical to clinical validation studies, not only bias related to
deep AI validation should be considered, because other types
of bias purely related to the blinding of the operator and the
randomization process may occur.
Conclusions
AI does not represent a mere technological improvement

for the management of upper GI neoplasia. By codifying
expert skills in a real-time algorithm, it automatically
transfers human knowledge from experts to the entire
gastroenterology community. By AI assistance, patient
outcome does not depend on the individual physician per-
forming the procedure, but his/her individual pitfalls—such
as miss rate or incorrect characterization of upper GI



Figure 1. Integration of different individual AI tasks for the
detection, characterization, treatment, and reporting of upper
GI neoplasia.
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neoplasia—may be prevented by the human–machine
interaction.17,69 AI also allows the perspective to be
changed for quality assurance in upper GI endoscopy.
Rather than intervening on the physician front, as several
interventions in this field, AI shifts the focus on the patient.
In this regard, it will be important to integrate all of the
available stand-alone algorithms in a combined approach.
For instance, navigation software can improve the exposure
of the mucosa, maximizing the efficacy of CADe in lesion
detection. In turn, CADx may indicate the need for further
biopsy/treatment, and delineation software may simplify
the subsequent resection (Figure 1). Thus, it is the patient
who is protected from any suboptimal detection or char-
acterization, irrespective of the competence of the
endoscopist.

However, AI incorporation in clinical practice will result
in new challenges. Because of the low prevalence of upper
GI neoplasia, community endoscopists must be up-skilled to
correctly differentiate between true and false positive AI
activations. This is also related to the fact that the adoption
of AI will accelerate the abandoning of random biopsies in
favor of target biopsies. This, on one hand, will reduce the
cost and burden of surveillance examination but, on the
other, will pose the risk of missing subtle neoplastic lesions
missed by AI but that would have been otherwise identified
by random biopsies. In addition, nondedicated centers need
to refer cases of upper GI neoplasia to tertiary centers,
generating organizational challenges. Alternatively, false
positive triggers may actually increase the costs and waste
of resources, which are not limited to additional biopsies,
also resulting in potential overtreatment, excessive sur-
veillance, or patient anxiety.
In general, AI appears to be a promising tool to stan-
dardize the detection and characterization of upper GI
neoplasia in diagnostic, screening, and surveillance endos-
copy. In addition, it may prevent rare but catastrophic er-
rors, such as missing an early or advanced cancer, which
may occur because of physician exhaustion, distraction, or
lack of expertise.
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